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Nonlinear Marangoni waves in multilayer systems
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The nonlinear theory of long Marangoni waves in systems with two interfaces is developed by means of
asymptotic expansions. The self-consistent three-layer approach is used. In the case where the thickness of one
of the layers is small, the system of coupled equations governing the deformations of both interfaces has been
derived. Traveling wave solutions of this system are investigated analytically and numerically.
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I. INTRODUCTION

It is well known that the thermocapillary effect~depen-
dence of the surface tension on the temperature! in a liquid
layer heated from below can lead to the onset of two kinds
instabilities. First, there exists theshort-wavelengthMa-
rangoni instability generating hexagonal cells@1,2#, which
can be described by means of coupled Ginzburg-Lan
equations@3#. The second type of instability is connecte
with the long-wavelengthdeformations of the interface@4,5#.
The deformational Marangoni instability, which prevails
the case of thin liquid layers or under microgravity con
tions, has been observed recently by VanHooket al. @6,7#
and studied numerically by Krishnamoorthyet al. @8#.

The evolution of the finite-amplitude long-waveleng
surface deformations is governed by the strongly nonlin
equation derived by Davis@9,10#. A simplified weakly non-
linear version of this equation was considered by Fun
@11# and Pukhnachev@12#. Numerical simulations of both
strongly and weakly nonlinear equations show that unlike
short-wave cellular instability, the long-wavelength deform
tional instability is not saturable and leads to a blowup
solutions. The experiments@6# justify this prediction, show-
ing the appearance of a dry spot.

The absence of the saturation of the long-wavelength
stability may be explained qualitatively in the following wa
In the framework of the usualone-layerapproach, when any
processes in the adjacent gas phase are ignored, the cr
temperature difference generating the instability is prop
tional to the squared local thickness of the liquid layer~be-
cause the critical Marangoni number is proportional to
Galileo number@5#!. Hence the instability is enhanced in th
regions where the thickness decreases.

It should be noted, however, that the dependence
the critical temperature difference on the thickness of
liquid layer may benonmonotonicif the phenomena in both
liquid and gas layers are taken into account~in the frame-
work of the two-layer approach@13#!. If the ratio of the
thicknesses of liquid and gas layers corresponds to the m
mal value of the critical temperature difference, both the
crease and the decrease of the local liquid layer thickn
weaken the instability. For the latter case, the existence
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f

u

r

a

e
-
f

-

ical
r-

e

of
e

i-
-
ss
a

stationary relief of the interface is predicted@14#.
Recently, a different direction, the investigation of th

thermocapillary convection in systems withtwo interfaces,
was conceived@15–24#. The interest to such systems wa
caused by various technical applications, including the liq
encapsulation crystal growth technique@22#, emulsified liq-
uid membrane separation techniques@25#, and droplet-
droplet coalescence processes@26#. It was shown that the
coupling between long-wave deformations of two interfac
may lead to a different type of long-wavelength oscillato
instability with an unusual dispersion relationv;k2 be-
tween the frequencyv and the wave numberk @23#.

In the present paper we develop the nonlinear theory
long Marangoni waves in systems with two interfaces. T
investigation is implemented in the self-consistent thr
layer approach. We concentrate on the analytically tracta
case, where the thickness of one of the layers is small.
mathematical formulation of the problem is described in S
II. In Sec. III we derive the system of amplitude equatio
governing the evolution of deformations of interfaces. S
tion IV is devoted to the analytical and numerical investig
tion of traveling wave solutions. The interaction betwe
traveling waves moving in different directions is consider
as well. The results of direct numerical simulations of wav
described by the amplitude equations are presented in
V. The concluding remarks are given in Sec. VI.

II. FORMULATION OF THE PROBLEM

Let the space between two rigid horizontal plates be fil
by three immiscible fluids with different physical propertie

FIG. 1. Side view of the three-layer configuration.
5765 © 1998 The American Physical Society
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~see Fig. 1!. The equilibrium thicknesses of the layers areai ,
i 51,2,3. The deformable interfaces are described by eq
tionsz5h(x,y,t) andz52a21h* (x,y,t). The i th fluid has
density r i , kinematic viscosityn i , dynamic viscosityh i
5r in i , heat diffusivity x i , and heat conductivityk i . The
surface tension coefficients on the upper and lower interfa
s and s* are linear functions of temperatureT: s5s0
2aT ands* 5s* 02a* T. The acceleration due to gravit
is g. We do not take into account buoyancy effects, wh
are negligible in the case of thin layers or under micrograv
conditions.

The horizontal plates are kept at different constant te
peratures. The temperature difference can be positive
negative and the overall temperature drop isu. Let us define

r5
r1

r2
, n5

n1

n2
, h5

h1

h2
5rn, x5

x1

x2
,

k5
k1

k2
, a5

a2

a1
, r* 5

r1

r3
, n* 5

n1

n3
,

h* 5
h1

h3
5r* n* , x* 5

x1

x3
, k* 5

k1

k3
, a* 5

a3

a1
.

As the units of length, time, velocity, pressure, and te
perature we usea1 , a1

2/n1 , n1 /a1 , r1n1
2/a1

2 , and u. The
complete nonlinear equations governing Marangoni conv
tion are then written in the dimensionless form

]vi

]t
1~vi¹!vi52ei¹pi1ciDvi , ~1!

]Ti

]t
1vi¹Ti5

di

P
DTi , ~2!

¹vi50, i 51,2,3, ~3!

where e15c15d151, e25r, c251/n, d251/x, e35r* ,
c351/n* , d351/x* , D5¹2, andP5n1 /x1 is the Prandtl
number.

The boundary conditions on the rigid boundaries are

v150, T150 at z51, ~4!

v350, T35s at z52a2a* , ~5!

with s51 for heating from below ands521 for heating
from above. The boundary conditions on the deformable
terfaces atz5h can be written in the form

p12p21
W0

R
~12daT1!1Gadh

5F S ]v1i

]xk
1

]v1k

]xi
D2h21S ]v2i

]xk
1

]v2k

]xi
D Gnink , ~6!

F S ]v1i

]xk
1

]v1k

]xi
D2h21S ]v2i

]xk
1

]v2k

]xi
D Gt i

~ l !nk2
M

P
t i

~ l !
]T1

]xi

50, l 51,2 ~7!
a-

es

y

-
or

-

c-

-

v15v2 , ~8!

]h

]t
1v1x

]h

]x
1v1y

]h

]y
5v1z , ~9!

T15T2 , ~10!

S ]T1

]xi
2k21

]T2

]xi
Dni50, ~11!

and atz52a1h* ,

p22p31
W* 0

R*
~12da* T1!1Gad* h*

5Fh21S ]v2i

]xk
1

]v2k

]xi
D2h

*
21S ]v3i

]xk
1

]v3k

]xi
D Gn* in* k ,

~12!

Fh21S ]v2i

]xk
1

]v2k

]xi
D2h

*
21S ]v3i

]xk
1

]v3k

]xi
D Gt* i

~ l !n* k

2
āM

P
t
* i
~ l !

]T3

]xi
50, l 51,2 ~13!

v25v3 , ~14!

]h*
]t

1v3x

]h*
]x

1v3y

]h*
]y

5v3z , ~15!

T25T3 , ~16!

S k21
]T2

]xi
2k

*
21 ]T3

]xi
Dn* i50, ~17!

where M5aua1 /h1x1 is the Marangoni number, Ga
5ga1

3/n1
2 is the Galileo number,W05s0a1 /h1n1 , da

5au/s0 , d5r2121, W* 05s* 0a1 /h1n1 , da
*

5a* u/s* 0 , d* 5r
*
212r21, ā5a* /a, R and R* are the

radii of curvature,n andn* are the normal vectors,t( l ) and
t
*
( l ) are the tangential vectors of the upper and lower int

faces, andpi is the difference between the overall pressu
and the hydrostatic pressure. The boundary value prob
~1!–~17! has the solution

vi50, pi50 ~ i 51,2,3!, h50, h* 50, ~18!

T15T1
052

s~z21!

11ka1k* a*
, ~19!

T25T2
052

s~kz21!

11ka1k* a*
, ~20!

T35T3
052s

k* z211~k* 2k!a

11ka1k* a*
, ~21!

corresponding to the mechanical equilibrium state.
Depending on physical parameters of fluids, the mecha

cal equilibrium state may become unstable with respec
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different instability modes. The short-wavelength instabil
modes were investigated in the framework of the line
theory in @18–20,24#.

The linear theory of the long-wave deformational M
rangoni instability was developed in@23#. Because of the
existence of two deformable boundaries, one can find in
limit of small wave numbersk two stationary instability
boundariesM5M1 andM5M2 . Also, anoscillatory insta-
bility boundary may arise, unlike the case of a single int
face. In the case where the relative thickness of the bot
layer is small (a* !1), the onset of oscillatory instability
was found for two cases

k2k* ,0, 12ha2.0, s.0 ~22!

~heating from below! and

k2k* .0, 12ha2,0, s,0 ~23!

~heating from above!. The investigation of nonlinear Ma
rangoni waves generated by the oscillatory instability is
main goal of the present paper.

III. DERIVATION OF THE AMPLITUDE EQUATIONS

Let us recall the main results of the weakly nonline
theory for the deformational instability in the case of a s
interface between two fluids~this corresponds toa* 50 in
our notation! @13,14#. The deflection of the interfaceh is
equivalent to the local change of the upper and lower la
thicknesses

a18512h, a285a1h. ~24!

Using expressions~24!, it is possible to calculate the critica
Marangoni numberMc as a function ofh. It is necessary to
distinguish between the two cases:~a! Q15(dMc /dh)h50
Þ0 and~b! Q150. As mentioned in Sec. I, in case~a! we
expect that the instability is nonsaturable. In case~b! the
instability may be saturable ifQ25(d2Mc /dh2)h50.0.

Indeed, in case~a! the asymptotic analysis@13,14# leads
to the amplitude equation~the Sivashinsky equation@27#!

]h~0!

]t
52D'~AD'h~0!1BM~1!h~0!1Ch~0!2!, ~25!

whereh(0) is the leading term in the asymptotic expansion
h5eh(0)1••• in powers of a small parametere, M (1)

5(M2Mc)/e, t5e2t, andD' is the scaled Laplacian op
erator; the expressions for positive coefficientsA, B, andC
are given in Appendix A.

Equation~25! may be written in the form

]h~0!

]t
5D'

dL

dh~0!
, ~26!

here the Lyapunov functionalL is defined as
r

e

-
m

e

r

r

f

L~h~0!!5E dx dy

3F1

2
A~¹'h~0!!22

1

2
BM~1!h~0!22

1

3
Ch~0!3G .

With the growth of time the functionalL decreases. Since i
is not bounded from below, the blowup of solutions is po
sible.

In case~b! one obtains the amplitude equation

]h~0!

]t
52D'~AD'h~0!1BM~1!h~0!2Dh~0!3!, ~27!

whereh5e1/2h(0)1•••; the coefficientD, which is defined
in Appendix A, is positive if Q2.0. The corresponding
Lyapunov functional

L~h~0!!5E dx dy

3F1

2
A~¹'h~0!!22

1

2
BM~1!h~0!21

1

4
Dh~0!4G

is bounded from below. Equation~27!, which was derived in
the theory of phase transitions, is known as theCahn-
Hilliard equation @28#. It describes the formation of two lo
cally stable ‘‘phases’’h(0)'6(BM(1)/D)1/2 separated by
kinks @29#.

In the case of a system with two interfaces one obta
two stationary instability boundariesM5M1 and M5M2
and in certain cases@see Eqs.~22! and~23!# also the oscilla-
tory instability boundaryM5M0 . If M1 and M2 are not
close to each other, the deformations of both interfacesh and
h* near each instability threshold are mutually proportion
and the problem is governed by Eq.~25! or ~27!. If M1 and
M2 are close and in the case of the oscillatory instability,
deformations of both interfaces can be considered as in
pendent active variables and we can expect that the prob
is governed by a system oftwo coupled equationsof the type
~25! or ~27!.

We are going to derive the system of amplitude equati
for an oscillatory instability in a specific case of a very th
bottom layera* !1. According to@23#, the threshold Ma-
rangoni number of the oscillatory instability is

M5M05
2s GadPa~11ha!~11ka!2

3k~11a!~12ha2!
1o~1! ~28!

and the frequency of oscillations in the long-wave limitk
→0 is determined by formulas

v5v~2!k21•••,

v~2!5Gada2F ~11ha!hh* ~k* 2k!

18Jk~11a!~12ha2!
G 1/2

a* 1o~a* !,

~29!

where

J5h2a414ha316ha214ha11.

The deflection of the interface~24! leads to the following
change of the critical Marangoni number~see Appendix B!:
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M05
2s GadP~12h!~a1h!@~12h!1h~a1h!#@~12h!1k~a1h!#2

3k~11a!@~12h!22h~a1h!2#
1o~1!, 2a,h,1. ~30!
r
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The expressions for Q15(dM0 /dh)h50 and Q2
5(d2M0 /dh2)h50 , which are important for the nonlinea
analysis, are given in the Appendix B. Cases~a! Q1Þ0 and
~b! Q150, Q2.0 are considered separately.

A. The caseQ1Þ0

Let us consider the region near the threshold of oscillat
instability

M5M01ma* , m5O~1!. ~31!

The linear theory predicts an oscillatory instability in th
region of small wave numbersk5O(a

*
1/2). This instability is

characterized by both the growth rate and the frequenc
oscillations ofO(a

*
2 ). From expression~30! we can expect

that the deformationsh5O(a* ) are relevant in the cas
Q1Þ0. Taking into account the scaling properties of eige
functions appearing in the linear theory, we introduce
scaling of variables

x̄5a
*
1/2x, ȳ5a

*
1/2y, t̄ 5a

*
2 t, h5a* h̄,

Tj5Tj
01a* Q j , pj5a* Pj , vj'5a

*
3/2V j' ,

v jz5a
*
2 Vjz ~ j 51,2!,

~32!

h* 5a
*
2 h̄* , T35s1a* Q3 , p35a* P3 ,

v3'5a
*
5/2V3' , v3z5a

*
4 V3z ,

where vm'[(vmx ,vmy), m51,2,3. In the region2a2a*
<z<2a the variable

z̄5~z1a!/a* ~33!

is used.
The solution f 5(H,H* ,Qm ,Pm ,Vm' ,Vmz) (m51,2,3)

is presented in the form of a series

f 5 f ~0!1a* f ~1!1•••. ~34!

We substitute the expansions~31!–~34! into the problem
~1!–~17! and collect the terms of the same order ina* . We
obtain the amplitude equations for ‘‘active’’ variablesH and
H* from the solvability conditions. The details of the de
vation of the amplitude equations are relegated to Appen
C. Here we describe the main steps of the derivation.

In zeroth order, the equations and boundary conditions
linear. We reproduce the results of the linear theory in
long-wavelength limit@23#, including the expression~28! for
the critical Marangoni number of the oscillatory instabilit
and obtain the equation
y

of

-
e

ix

re
e

]h̄
*
~0!

] t̄
5ED̄'h̄~0!, ~35!

where

E5
Gad

6

h* a

12ha2
, D̄'5

]2

] x̄2
1

]2

] ȳ2
,

which describes in the leading order the time evolution of
deformation of the lower interface.

In the first order ina* we obtain the nonlinear amplitud
equation for the evolution of the deformation of the upp
interface

]h̄~0!

] t̄
52D̄'@AD̄'h̄~0!1B~m2m* !h̄~0!1Ch̄~0!21Fh̄

*
~0!#,

~36!

where the coefficientsA,B,C areexactlythe same as in Eq
~25!, the quantitym* describing the deviation of the critica
Marangoni number from the valueM0 in the first order ina*
is calculated in Appendix C, and

F5
sM0~k* 2k!ha2~12ha2!

2P~11ka!2J
.

Thus we obtained thecoupledsystem of amplitude equa
tions ~35! and ~36! describing the nonlinear evolution o
long-wavelength deformations of both interfaces near the
stability threshold in the casea* !1. Let us note that Eqs
~35! and ~36! predict a linear oscillatory instability with the
frequencyv5AEFk21O(k4) in the case ofE andF having
the same sign, which coincides with formula~29!.

B. The caseQ150

In the caseQ150, the nonlinear coefficientC in Eq. ~36!
vanishes. In order to obtain the nonlinear saturation, it
necessary to use a different scaling of functions

h5a
*
1/2h̄, Tj5Tj

01a
*
1/2Q j , pj5a

*
1/2Pj ,

vj'5a* V j' , v jz5a
*
3/2Vjz ~ j 51,2!,

~37!

h* 5a
*
3/2h̄* , T35s1a

*
1/2Q3 , p35a

*
1/2P3 ,

v3'5a
*
2 V3' , v3z5a

*
7/2V3z .

The solution is expanded into series in powers ofa
*
1/2. Fi-

nally, Eq.~35! is not changed, while Eq.~36! is replaced by
the amplitude equation
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]h̄~0!

] t̄
52D̄'@AD̄'h̄~0!1B~m2m* !h̄~0!2Dh̄~0!31Fh̄

*
~0!#,

~38!

where the coefficientD is the same as in Eq.~27!.
In the case of small but nonzeroQ1 , where the coefficient

C is not exactly equal to zero but small,C5C̄a
*
1/2, C̄

5O(1), the equation containing both quadratic and cub
nonlinearities is obtained~see@13#!:

]h̄~0!

] t̄
52D̄'@AD̄'h̄~0!1B~m2m* !h̄~0!

1C̄h̄~0!22Dh̄~0!31Fh̄
*
~0!#. ~39!

Equations~36! and~38! can be considered as particular cas
of Eq. ~39!. By means of the transformation

h̄5~FE/D2!1/4H, h̄* 5~E3/FD2!1/4H* ,

X5~FE/A2!1/4x̄, Y5~FE/A2!1/4ȳ, t5~FE/A! t̄ ,
~40!

Eqs.~39! and ~35! are rewritten in the form

]H

]t
1D'~D'H1mH1gH22H31H* !50, ~41!

]H*
]t

2D'H50, ~42!

where

D'5
]

]X2
1

]

]Y2
, m5

B~m2m* !

~FE!1/2
, g5

C̄

~FED2!1/4
.

IV. TRAVELING WAVE SOLUTIONS

The trivial solutionH50, H* 50 of the system~41! and
~42! is stable with respect to disturbances with the wa
numberk in the regionm,k2. On the neutral curvem5m0
5k2, an oscillatory instability with the frequencyv056k2

appears. In the present section, we consider small-ampli
solutions that bifurcate on the neutral curve.

A. Bifurcation of traveling wave solutions

In order to describe the traveling wave solutions near
neutral curve @m2m05O(e2), e!1#, we introduce the
time scales

t05t, t25e2t, . . . ~43!

and use the expansions

m5m01e2m2 , H5eH11e2H21•••,

H* 5eH* 11e2H* 21•••. ~44!

In the first order ine, we obtain a linear eigenvalue prob
lem. Let us consider a particular solution corresponding t
s

e

de

e

a

traveling wave that propagates along theX axis in the posi-
tive direction and has the wave numberk. We choose

H15A~t2!ei ~kX2v0t0!1c.c.,

H* 15B~t2!ei ~kX2v0t0!1c.c.

~c.c. means complex conjugate! and find m05k2, v05k2,
andB52 iA. In the second order, the solution is

H25A2~t2!e2i ~kX2v0t0!1c.c.,

H* 25B2~t2!e2i ~kX2v0t0!1c.c.

~we omit the general solution of the homogeneous system
renormalizing the amplitude!, where

A25
2gA2

3~ i 12k2!
, B2522iA2 .

The solvability condition for the third-order equations d
termines the Landau equation for the amplitude evolution

dA

dt2
5

k2

2 H m2A1F4g2~2k22 i !

3~114k4!
23G uAu2AJ . ~45!

The limit cycle corresponding to a traveling wave solution
A5uAuexp(iv2t2), where

v25
2g2k2

3~114k4!
, ~46!

uAu25m2F32
8g2k2

3~114k4!
G21

. ~47!

One can see that the bifurcation is supercritical for any v
ues ofk if g,3/A2. Otherwise, an interval of a subcritica
bifurcation appears in a certain interval ofk.

B. Interaction of traveling waves

In order to consider the interaction of traveling waves,
use the same scales~43! and expansions~44! as in the pre-
ceding subsection, but in the leading order of the expans
we choose the solution

H15A~1!~t2!ei ~k~1!
•X2v0t0!1A~2!~t2!ei ~k~2!

•X2v0t0!c.c.,

H* 15B~1!~t2!ei ~k~2!
•X2v0t0!1B~2!~t2!ei ~k~2!

•X2v0t0!c.c.,

uk(1)u5uk(2)u5k, v05k2, B(1)52 iA (1), and B(2)5
2 iA (2), corresponding to two traveling waves moving
different directions. In the second order, the solution has
structure

H25A2
~1,1!~t2!e2i ~k~1!

•X2v0t0!1A2
~2,2!~t2!e2i ~k~2!

•X2v0t0!

1A2
~1,2!~t2!e2i ~k~1!1k~2!!•X22v0t0)

1A2
~1,22!~t2!e2i ~k~1!2k~2!!•X1c.c.,
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H* 25B2
~1,1!~t2!e2i ~k~1!

•X2v0t0!1B2
~2,2!~t2!e2i ~k~2!

•X2v0t0!

1B2
~1,2!~t2!e2i ~k~1!1k~2!!•X22v0t0)

1B2
~1,22!~t2!e2i ~k~1!2k~2!!•X1c.c.

~as before, we omit the general solution of the homogene
system!. We obtain the following expressions for the coef
cients:

A2
~1,1!5

2gA~1!2

3~ i 12k2!
, B2

~1,1!522iA2
~1,1! ,

A2
~2,2!5

2gA~2!2

3~ i 12k2!
, B2

~2,2!522iA2
~2,2! ,

A2
~1,2!5

2g~11z!A~1!A~2!

i z~21z!1~11z!~112z!k2
,

B2
~1,2!52 i ~11z!A2

~1,2! ,

A2
~1,22!50, B~1,22!52gA~1!A~2!* ,

where z5k(1)
•k(2)/k2. The solvability condition for the

third-order equations determines a pair of Landau equat
for the amplitudes evolution:

dA~1!

dt2
5

k2

2
@m2A~1!2l0uA~1!u2A~1!2l~z!uA~2!u2A~1!#,

dA~2!

dt2
5

k2

2
@m2A~2!2l0uA~2!u2A~2!2l~z!uA~1!u2A~2!#,

~48!

where

l0532
4g2~2k22 i !

3~114k2!
, ~49!

l~z!562
4g2~11z!@~k2~11z!~112z!2 i z!~21z!#

k4~11z!2~112z!21z2~21z!2
.

~50!

The system of equations~48! describes the nonlinear evolu
tion of two interacting harmonic waves. It can be eas
shown that in the case where 0,Rel0,Rel(z) for any z
~Re denotes the real part!, the one-dimensional travelin
wave solutionsuA(1)u25m2 /Rel0 , uA(2)u250 and uA(2)u2

5m2 /Rel0 , uA(1)u250 are stable asm2.0 in frames of the
system~48!. In the case Rel(z),Rel0 , the nonlinear su-
perposition of two waves uA(1)u25uA(2)u25m2 /@Rel0
1Rel(z)# is stable ifm2.0, Rel01Rel(z).0.

Using expressions~49! and ~50!, we find that the neces
sary condition of the stability of one-dimensional traveli
wave solutions is
us

ns

Re@l~z!2l0#531k2g2F 8

3~4k411!

2
4~11z!2~112z!

k4~11z!2~112z!21z2~21z!2G.0.

~51!

If g50 @the quadratic term in the Eq.~41! is absent# the
one-dimensional traveling wave is stable with respect to d
turbances with the same wave number moving in any dir
tion.

If g is small, the expression~51! is negative only in the
region of small wave numbers,uku,A4/3g1O(g5), and
positive otherwise. The expression~51! is minimal for small
values of the parameterz: z'2k4/4. Thus the transition to
nearly square patterns is expected for sufficiently smallk.
Let us note that square patterns were predicted in the cas
the dispersion relationv;k2 by Pismen@30#. For finite val-
ues ofg, the traveling wave is unstable with respect to d
turbances withz50, generating square patterns, if its wa
number satisfies the relationuku,k* (g), where

g25
9k2~4k411!

4~3110k4!
.

C. Finite-amplitude traveling waves

In the previous subsections, we analyzed small-amplit
traveling waves near the neutral curve. Now we shall c
sider finite-amplitude spatially periodic traveling wave so
tions

H5H~j!, H* 5H* ~j!, j5X2ct, ~52!

H~j1L !5H~j!, H* ~j1L !5H* ~j!. ~53!

Substituting Eq.~52! into Eqs. ~41! and ~42!, eliminating
H* (j), and integrating once the obtained equation, we arr
at

Hjjj2
Hjj

c
1mHj2cH1~gH22H3!j52c^H&, ~54!

where the subscriptj denotes differentiation with respect t
j and the integration constant

^H&5
1

LE0

L

H~j!dj

is the mean value of the functionH(j) and therefore should
be set equal to zero becauseH(j) is proportional to the
deviation of the fluid level from its mean value.

Spatially periodic waves~52! and~53! correspond to limit
cycles of the dynamical system~54!. Equation~54! with the
periodicity conditionH(j1L)5H(j) is a nonlinear eigen-
value problem for the phase velocityc(L). Because the de
pendencec(L) is a priori unknown, we actually treated in
our calculations the velocityc as a free parameter and com
puted the corresponding value of the limit cycle’s peri
L(c).
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Equation ~54! can be simplified in the limiting case o
small c. Multiplying Eq. ~54! by H and integrating over the
period, we find that̂Hj

2&5c2^H2&. Thus the limitc→0 cor-
responds to the long-wavelength limitL→`.

In this long-wavelength limit, it is convenient to use th
variablez5cj and to rewrite Eq.~54! in the form

2c2Hzzz1Hzz1~H32gH22mH !z1H50. ~55!

Let us note thatH* 52Hz . In the limit c→0, if the periodic
solutions of Eq.~55! reveal no boundary layers, they tend
the periodic solutions of the second-order equation

Hzz1~H32gH22mH !z1H50. ~56!

For the caseg50 where the traveling waves are expected
be stable with respect to two-dimensional disturbances,
~56! turns into the familiar case of the Van der Pol equat
@31#. The latter is known to yield limit cycles whose sha
varies from harmonic oscillations~in the case of smallm) to
the strongly nonlinear relaxation oscillations for large valu
of m. In the case of nonzerog the invariance of the equatio
with respect to the change of sign ofH is broken: The relax-
ationlike oscillations are still observed, but the characteri
Van der Pol symmetry between the humps and the trough
absent.

Some additional simplification of Eq.~56! can be ob-
tained in the limit g@1, m!1. If we assume thatH
5g21H̃ and H̃5O(1) and omit the term containingm, we
find in the leading order

H̃zz2~H̃2!z1H̃50. ~57!

FIG. 2. Examples of traveling wavetrains according to Eq.~56!:
~a! g50, c520.222, m52; ~b! g51, c520.08, m50.368;
~c! g55, c520.36033, m50.03; ~d! g53, c521, m50.7;
~e! g53, c520.8, m50.368.
q.

s

ic
is

The trajectory corresponding to the unbounded solution

H̃5z/2 ~58!

separates the phase plane (H̃,H̃* 52H̃z) into two regions.
In the regionH̃* ,21/2 the trajectories tend to infinity a
z→6`. The half planeH̃* .21/2 is filled by periodic or-
bits determined by the equation

H̃* 2 ln~112H̃* !1
1

2
H̃25E, E5const.0.

If E@1, the wave relief has a ‘‘sawlike’’ shape. On a lon
interval of the lengthO(AE), H̃* 521/21O„exp(2E)…, so
that the relief ofH̃ is exponentially close to the linear profil
~58!. On a short interval of the lengthO(1/AE), H̃* .0, and
H̃* 5O(E), which corresponds to a steep wave front ofH̃.

The typical wave profilesH(z) andH* (z) calculated by
means of the symmetric (g50) and ‘‘asymmetric’’ (g51)
equation~55! are plotted in Figs. 2~a! and 2~b!, respectively.
These two plots, as well as Figs. 2~c! and 2~d!, present the
longitudinal shape of the waves in the correct way. On
contrary, the vertical displacements, as related to the th
nesses of the layers, cannot be recovered from the equa
and therefore are represented only qualitatively.

In the case of vanishing or small values ofg this regular
pattern with one hump on a period is the only nontriv
bounded solution of Eq.~54! and exists only for positive
values ofm; the velocity of the traveling waves obeys th
inequality c2,m and for each value ofc there exists only
one periodic solution. The situation changes forg.A3 when
the above inequality does not necessarily hold. In this c
the increase ofm can create the finite-amplitude period
solutions through a saddle-node bifurcation. Underg.2.8
the traveling waves of this kind can be found even for ne
tive values ofm. For sufficiently largeg, the upper interface
displays the characteristic sawlike oscillations, whereas
lower one is built of the long, almost horizontal segmen
separated by short elevations@Fig. 2~c!#.

Moderate and large values ofg allow for more compli-
cated patterns of traveling waves: In this parameter dom
one encounters further bifurcations of periodic solutio
which include cascades of period doublings~in fact, these
doublings with respect to the variablej are doublings of the
spatial period! and the onset of chaotic wave profiles. R
spective deformations of the interfaces are plotted in F
2~d! and 2~e!. In the last three cases the periodic patte
delivered by Eq.~55! under the fixed values ofg andm for
a given velocityc is not unique~in the very last case there i
apparently an infinity of different periodic solutions!.

FIG. 3. Traveling wave form52 and g50. The initial condi-
tion is a small-amplitude random field.



d
t

im

of
th

tio
ut

n
ll
io

th

om
le

he

le

ed

ed
om
ve

es
g

l
vo-

irs

ob-
al

he

ns
our

the
r-
are
er-
ear
han
n.
s.
ex-
ga-
sent

eli
der
wl-
u-
.

bil-

ons:

5772 PRE 58IGOR L. KLIAKHANDLER et al.
V. NUMERICAL SIMULATION OF THE AMPLITUDE
EQUATIONS

The one-dimensional version of Eqs.~41! and ~42!

]H

]t
1

]2

]X2S ]2H

]X2
1mH1gH22H31H* D 50, ~59!

]H*
]t

2
]2H

]X2
50 ~60!

was simulated numerically under periodic boundary con
tions. The pseudospectral technique was employed for
spatial discretization and the Adams scheme for the t
advance. The standard routinesCO6EAF and CO6EBF for the
fast Fourier transform andDO2CBF for the Adams scheme
from the NAG routines library were used. The number
spatial discretization points was chosen in such a way
the typical wavelengthlc52p/kc of the most unstable~in
linear approximation! mode with wave numberkc was cov-
ered by at least ten points. The latter ensures fair resolu
of the calculated solution. The time step was chosen a
matically.

Both small-amplitude random fields and regular functio
with amplitudes ofO(1) were used as initial data in a
simulations. In a number of cases the result of evolut
depends on initial conditions. This means that Eqs.~59! and
~60! have different coexisting attractors. We considered
same values of parameters (g, m) as in Fig. 2.

For the parameters values ofg andm from Fig. 2~a! two
different interfacial configurations were obtained: Rand
small-amplitude initial conditions evolved to the profi
shown in Fig. 3, whereas the regularO(1) initial conditions
settled to the wave plotted in Fig. 4. Interfaces form t
traveling waves moving with velocitiesc520.0015 andc
520.01, respectively. In both cases the typical wave sca
larger than that predicted by the linear theory,lc .

A few different interfacial configurations were observ
for the pairm50.368, g51 @Fig. 2~b!#. Depending on the
initial conditions, the number of the humps for the settl
wave states within the domain varies between 1 and 6; c
pared to the results of the linear stability analysis, the wa

FIG. 4. Traveling wave form52 and g50. The initial condi-
tion is a regular function ofO(1).

FIG. 5. Traveling wave form50.368 andg51.
i-
he
e
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-
-

length is noticeably larger. Figure 5 shows the interfac
with four typical humps that form the traveling wave movin
with the velocity c520.001 97. Only the blowup for al
tested initial conditions was observed in final stage of e
lution for the pairm50.03, g51.

Typical irregular interfacial profiles observed for the pa
m50.7, g53 @Fig. 2~d!# and m50.368, g53 @Fig. 2~e!#
are shown in Figs. 6 and 7, respectively. The dynamics,
served for all initial conditions, are unsteady. The typic
wave scale in both cases is larger thanlc . The question of
stability of one-dimensional regimes in the framework of t
partial differential equations~41! and ~42! as well as their
evolution with respect to the two-dimensional perturbatio
must be studied separately and lies outside the range of
current research.

VI. CONCLUSIONS

We have shown that the weakly nonlinear regimes of
long-wave Marangoni instability in a system with two inte
faces in the case where one of the fluid layers is thin
governed by the Cahn-Hilliard equation coupled with a c
tain linear equation. In the absence of the quadratic nonlin
term, the periodic traveling waves are generated rather t
kinks that are typical for the pure Cahn-Hilliard equatio
Numerical simulation reveals multistability of wavy regime
If the quadratic nonlinear interaction is present, one can
pect the onset of two-dimensional wavy patterns. Investi
tion of such patterns remains beyond the scope of the pre
paper.
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APPENDIX A

The equations~25! and~27! describing the evolution of an
interface in the case of a stationary long-wavelength insta
ity were derived in@14# ~see also@13#!. Here we present the
expressions for the coefficients appearing in these equati

FIG. 6. Typical interfacial profiles form50.7 and g53.

FIG. 7. Typical interfacial profiles form50.368 andg53.
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A5zN, B5
z

Mc
, C52

zK1

2
, D52

zK2

6
,

~A1!

where

z5
Gadha3~11ha!

3S
,

S5114ha16ha214ha31h2a4; ~A2!

N5
~k21!a~12a!

3~11ka!
1

~h1a!a

15~11ha!
1

2~12h!a2

15~12ha2!
1

W

Gad

1
P~12xa2!ha3Gad

120~11a!~12ha2!
; ~A3!

Mc5
2sPGad~11ka!2a~11ha!

k~11a!~12ha2!
; ~A4!

K15
h~11a!

11ha
1

2k~11a!

11ka
1

122a

a
1

2ha~11a!

12ha2
;

~A5!

K252
h21

11ha
2

k21

11ka
2

1

a
2

112ha

12ha2

1
~h21!~k21!

~11ha!~11ka!
1

h21

a~11ha!
1

~h21!~112ha!

~12ha2!~11ha!

1
k21

a~11ka!
1

~k21!~112ha!

~11ka!~12ha2!
1

112ha

a~12ha2!

1
h

12ha2
1S 112ha

12ha2 D 2

. ~A6!

APPENDIX B

A uniform deflection of the upper interface~24! is equiva-
lent to the local change of the upper and middle layer thi
nesses~in dimensional variables!

a185a1~12h!, a285a21ha1 .

The onset of convection instability is determined by the
rameters

M 85
aua18

h1x1
, Ga85

ga18
3

n1
2

, a85
a28

a18
.

According to Eq.~28!, the threshold is governed by the fo
mula

M085
2s Ga8dP~11ha8!~11ka8!2

3k~11a8!~12ha82 !
1o~1!.

Returning to variablesM , Ga, andd, we rewrite the latter
equation in the form~30!. The parameterh can vary within
-

-

the interval 2a,h,1. The expressions for variablesQ1
5(dM0 /dh)h50 andQ25(d2M0 /dh2)h50 are directly con-
nected with those ofK1 andK2 @see Eqs.~A5! and ~A6!#:

Q15K1M0 , Q25K2M0 .

APPENDIX C

In the present appendix we describe some details of
derivation of the amplitude equations~35! and ~36!. Substi-
tuting the expressions~31!–~34! into the problem~1!–~17!,
we obtain the following system of equations and bound
conditions:

2¹̄'P11
]2V1'

]z2
1a* 2D̄'V1'5O~a

*
2 !, ~C1!

2
]P1

]z
1a*

]2V1z

]z2
5O~a

*
2 !, ~C2!

a* V1zA1
01O~a

*
2 !5

1

P

]2Q1

]z2
1

a*
P

D̄'T1 , ~C3!

]V1z

]z
1¹̄'•V1'50, ~C4!

2r¹̄'P21
1

n

]2V2'

]z2
1

a*
n

D̄'V2'5O~a
*
2 !, ~C5!

2r
]P2

]z
1

a*
n

]2V2z

]z2
5O~a

*
2 !, ~C6!

a* V2zA2
01O~a

*
2 !5

1

xP

]2Q2

]z2
1

a*
xP

D̄'T2 , ~C7!

]V2z

]z
1¹̄'•V2'50, ~C8!

2r* a* ¹̄'P31
1

n*

]2V3'

] z̄2
5O~a

*
3 !, ~C9!

2r*
]P3

] z̄
5O~a

*
2 !, ~C10!

1

x* P

]2Q3

] z̄2
5O~a

*
2 !, ~C11!

]V3z

] z̄
1¹̄'•V3'50, ~C12!

V1'50, V1z50, Q150 at z51, ~C13!

V'350, V3z50, Q35s at z̄521; ~C14!

at z50,



em

5774 PRE 58IGOR L. KLIAKHANDLER et al.
P11a*
]P1

]z
h̄2P22a*

]P2

]z
h̄1

W0

a * D̄'h̄1Gadh̄

52a* S ]V1z

]z
2h21

]V2z

]z D1O~a
*
2 !, ~C15!

]V1'

]z
2h21

]V2'

]z
1a* h̄S ]2V1'

]z2
2h21]2V2']z2D

1a* ~¹̄V1z2h21¹̄V2z!2
M01ma*

P
¹̄Q1

2
M0

P
a* h̄

]¹̄Q1

]z
2

M01ma*
P

A1
0¹̄h̄2

M0

P
A1

1¹̄h̄

2
M0

P
a* ¹̄h̄

]Q1

]z
5O~a

*
2 !, ~C16!

V1'1a* h̄
]V1'

]z
5V2'1a* h̄

]V2'

]z
1O~a

*
2 !, ~C17!

V1z1a* h̄
]V1z

]z
5V2z1a* h̄

]V2z

]z
1O~a

*
2 !, ~C18!

a*
]h̄

] t̄
1a* V1'•¹̄h̄5V1z1a* h

]V1z

]z
1O~a

*
2 !,

~C19!

Q11A1
0h̄1a* h̄

]Q1

]z
5Q21A2

0h̄1a* h̄
]Q2

]z
, ~C20!

]Q1

]z
1a* h̄

]2Q1

]z2
2k21

]Q2

]z
2k21a* h̄

]2Q2

]z2
5O~a

*
2 !;

~C21!

at z52a, z̄50,

P22P32a* h*
¯

]P3

] z̄
1Gad* a* h̄* 12a* h21

]V2z

]z

5O~a
*
2 !, ~C22!

h21S ]V2'

]z
1a* ¹̄V2zD2h

*
21 ]V3'

] z̄
2

āM0

P
a* ¹̄Q3

5O~a
*
2 !, ~C23!

V2'5a* V3'1O~a
*
2 !, ~C24!

V2z5O~a
*
2 !, ~C25!

]h̄*
] t̄

1a* V3'•¹̄h̄* 5V3z1O~a
*
2 !, ~C26!
Q21a* h̄* A2
05a* Q31a* h̄* A3

01O~a
*
2 !, ~C27!

k21
]Q2

]z
2k

*
21 ]Q3

] z̄
2k

*
21a* h̄*

]2Q3

] z̄2
5O~a

*
2 !,

~C28!

where

dTj
0

dz
5Aj

01a* Aj
11•••,

A1
052

s

11ka
, A2

052
sk

11ka
, A3

052
sk*

11ka
,

A1
15

sk*
~11ka!2

, A2
15

skk*
~11ka!2

, A3
15

sk
*
2

~11ka!2
.

We construct the solution in the form~34!.
In the zeroth order, we obtain a linear eigenvalue probl

that determines the critical Marangoni number~28! and the
eigenfunction

Q1
~0!5

s~k21!h̄~0!

~11ka!2
~z21!,

Q2
~0!5

sk~k21!h̄~0!

~11ka!2
~z1a!,

Q3
~0!5

sk* ~k21!h̄~0!

~11ka!2
~ z̄11!,

V1'
~0!5

ha2

12ha2
Gad¹̄'h̄ ~0!S 1

2
z22

2

3
z1

1

6D ,

V1z
~0!5

ha2

12ha2
GadD̄'h̄~0!S 2

1

6
z31

1

3
z22

1

6
zD ,

V2'
~0!5

h

12ha2
Gad¹̄'h̄~0!S 1

2
z21

2a

3
z1

a2

6 D ,

V2z
~0!5

h

12ha2
GadD̄'h̄~0!S 2

1

6
z32

a

3
z22

a2

6
zD ,

V2'
~0!5

h* a

12ha2
Gad¹̄'h̄~0!S 2

1

3
z̄2

1

3D ,

V3z
~0!5

h* a

12ha2
GadD̄'h̄~0!S 1

6
z̄21

1

3
z̄1

1

6D ,
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P1
~0!5Gad

ha2

12ha2
h̄~0!, P2

~0!5P3
~0!5Gad

1

12ha2
h̄~0!.

Also, we obtain the relation~35!.
In the first order ina* , we obtain the inhomogeneou

linear problem. The solvability condition for this proble
gives the relation~36! with
ft,

k,

Flu

d
-

-

t.

sh
m* 5
2s GadP~11ka!

3~12ha2!k~11a!
Fk* ~11ha!~2112k1ka!

k~11a!

1
h* ~112ha1ha2!~11ka2!~11ka!

h~12ha2!
G . ~C29!
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