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Nonlinear Marangoni waves in multilayer systems
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The nonlinear theory of long Marangoni waves in systems with two interfaces is developed by means of
asymptotic expansions. The self-consistent three-layer approach is used. In the case where the thickness of one
of the layers is small, the system of coupled equations governing the deformations of both interfaces has been
derived. Traveling wave solutions of this system are investigated analytically and numerically.
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I. INTRODUCTION stationary relief of the interface is predictgt#].
Recently, a different direction, the investigation of the

It is well known that the thermocapillary effe¢depen- thermocapillary convection in systems witwo interfaces
dence of the surface tension on the temperatima liquid ~ was conceived15-24. The interest to such systems was
layer heated from below can lead to the onset of two kinds ofaused by various technical applications, including the liquid
instabilities. First, there exists thshort-wavelengthMa- ~ €ncapsulation crystal growth technigi22], emulsified lig-
rangoni instability generating hexagonal cells?], which ~ uid membrane separation techniquf25], and droplet-
can be described by means of coupled Ginzburg-Landadroplet coalescence procesd@$]. It was shown that the
equations[3]. The second type of instability is connected coupling between long-wave deformations of two interfaces
with the long-wavelengtideformations of the interfadd,5. ~ May lead to a different type of long-wavelength oscillatory
The deformational Marangoni instability, which prevails in instability with an unusual dispersion relatian~k?* be-
the case of thin liquid layers or under microgravity condi- tween the frequency and the wave numbée[23].
tions, has been observed recently by VanHewkl. [6,7] In the present paper we develop the nonlinear theory of
and studied numerically by Krishnamoorteyal. [8]. long Marangoni waves in systems with two interfaces. The

The evolution of the finite-amplitude long-wavelength investigation is implemented in the self-consistent three-
surface deformations is governed by the strongly nonlineal@yer approach. We concentrate on the analytically tractable
equation derived by Davi@,lO]_ A S|mp||f|ed Weak|y non- Case, where the thickness of one of the Iayers is small. The
linear version of this equation was considered by Funadglathematical formulation of the pI’Oblem is described in Sec.
[11] and Pukhnachey12]. Numerical simulations of both Il. In Sec. Ill we derive the system of amplitude equations
strongly and weakly nonlinear equations show that unlike th@overning the evolution of deformations of interfaces. Sec-
short-wave cellular instability, the long-wavelength deforma-tion 1V is devoted to the analytical and numerical investiga-
tional instability is not saturable and leads to a blowup oftion of traveling wave solutions. The interaction between
solutions. The experimenf§] justify this prediction, show- traveling waves moving in different directions is considered
ing the appearance of a dry spot. as well. The results of direct numerical simulations of waves

The absence of the saturation of the long-wavelength indescribed by the amplitude equations are presented in Sec.
stability may be explained qualitatively in the following way. V- The concluding remarks are given in Sec. VI.
In the framework of the usuane-layerapproach, when any
processes in the adjacent gas phase are ignored, the critical Il. FORMULATION OF THE PROBLEM
temperature difference generating the instability is propor-
tional to the squared local thickness of the liquid layee- b
cause the critical Marangoni number is proportional to the
Galileo numbef5]). Hence the instability is enhanced in the
regions where the thickness decreases.

Let the space between two rigid horizontal plates be filled
y three immiscible fluids with different physical properties

It should be noted, however, that the dependence oi 1
the critical temperature difference on the thickness of the
liquid layer may benonmonotonidf the phenomena in both 2

liquid and gas layers are taken into accodntthe frame-
work of the two-layer approach[13]). If the ratio of the
thicknesses of liquid and gas layers corresponds to the mini

mal value of the critical temperature difference, both the in-
crease and the decrease of the local liquid layer thickness
weaken the instability. For the latter case, the existence of a FIG. 1. Side view of the three-layer configuration.
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(see Fig. L The equilibrium thicknesses of the layers are Vi=Vs, (8)
i=1,2,3. The deformable interfaces are described by equa-
tionsz=h(x,y,t) andz=—a,+h, (x,y,t). Theith fluid has dh dh ah
density p;, kinematic viscosityr;, dynamic viscosity; E*%x&ﬂflyw:vlz. 9)
=p;v;, heat diffusivity y;, and heat conductivity;. The
surface tension coefficients on the upper and lower interfaces =
- ) T,=T,, (10
o and o, are linear functions of temperatufE o=oy
—aT ando, =0, a,T. The acceleration due to gravity aT, aT,
is g. We do not take into account buoyancy effects, which (%_K_]'W)ni_ : (1)
are negligible in the case of thin layers or under microgravity ! :
conditions. and atz=—a+h, ,
The horizontal plates are kept at different constant tem-
peratures. The temperature difference can be positive or 0
negative and the overall temperature drop.id et us define P2~ Pt (17 8u Ty) +Gad, hy
*
P1 ” Vi 71 . X1 1 &UZi n &vZk -1 ﬂvgi + &ng
= =, == ’ =, - — - — — — 1 |NgiN y
L v, Ty P AT KO * A\ ox, | axg || TRk
12
K1 a P1 141 12
K==, 8= =, Py~ Vy=—,
K2 a P3 V3 _qfvai | vk _q[ 9vsi | skl |
Toaxe o | T ok | o TxiMek
n—ﬂ—pv X_Xl K_K1 a_as -
* g PrPe e BT ST aM  aT
s X 3 L — 5 T 5=0, 1=12 (13
As the units of length, time, velocity, pressure, and tem- '
perature we usey, af/vl', vilay, plﬁlaf, and 6. The Vo=Vs, (14)
complete nonlinear equations governing Marangoni convec-
tion are then written in the dimensionless form ah, ah, ah,
- gt U Tgx Uy Ty T Use (19
1
— 4 (V: = — A ciAV: 1
—H(V)vi=—eVpi+cay, 1) T,=T,. 16
&Ti di &Tz _ 5T3
W—'—ViVTi:EATir 2 K 10"_)(i_K*1&_Xi n,;=0, a7
Vv;=0, i=1,2,3, (3) where M=a#ba;/n;x; is the Marangoni number, Ga
=gai/v? is the Galileo numberWy=o00a;/71v1, 6,
wheree;=c;=d;=1, e,=p, C,=1/v, dy,=1ly, e;=p, , =ablog, S=p 1-1, W,o=0,0a1/7.v1, Oa,
cs=1lv, , d3=1/x, , A=V?, andP=uv,/y, is the Prandtl 1

=a, 00,9, 5*=p;1—p_ ,a= a, la, RandR, are the
radii of curvaturen andn, are the normal vectors!) and
1-51) are the tangential vectors of the upper and lower inter-

number.
The boundary conditions on the rigid boundaries are

v;=0, T;=0 atz=1, (4) faces, andp; is the_ difference between the overall pressure
and the hydrostatic pressure. The boundary value problem
v;=0, Ts=s atz=—a-a,, (5 (1)—(17) has the solution

with s=1 for heating from below and=—1 for heating vi=0, pi=0 (i=1293, h=0, h,=0, (18

from above. The boundary conditions on the deformable in-

h : s(z—1)
terfaces az=h can be written in the form =T70=—
=T l+ka+k,a,’ (19
W,
P1—Pot £ (1-6,Ty)+Gash . s(kz—1) 20
2727 1+katk,a,’
i | Ivak _4[ 9vai 5’Uzk)
=|—+—=—- —+——||mn
(&Xk &xi) n X, ax; ing, (6) T =T0=_SK*Z—1+(K*_K)a 21)
378 l+ka+k,a,
1901i 301k 1 &in (902k 0 M (l)&Tl ) ) o
(9_)(k+(9—xi - (9_Xk+(?_X. Ti nk_FTi (9_X| corresponding to the mechanical equilibrium state.

Depending on physical parameters of fluids, the mechani-
=0, 1=1,2 (7) cal equilibrium state may become unstable with respect to
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different instability modes. The short-wavelength instability
modes were investigated in the framework of the linear L(h(o)):f dxdy
theory in[18-20,24.

The linear theory of the long-wave deformational Ma-
rangoni instability was developed ii23]. Because of the

existence of two deformable boundaries, one can find in the ] ) i )
limit of small wave numbersk two stationary instability ~ With the growth of time the functional decreases. Since it

boundariesM =M, andM =M. Also, anoscillatory insta- is not bounded from below, the blowup of solutions is pos-

bility boundary may arise, unlike the case of a single inter-Sible' . . .
Y y may g In case(b) one obtains the amplitude equation

face. In the case where the relative thickness of the bottom
layer is small &, <1), the onset of oscillatory instability oh(©®
was found for two cases a7

1 1 1
h (0N2_ ZRMDRO2_ ZcKHO3
X 2A(Vih ) 2BM h 3Ch .

=—A,(AA hO+BMDRO_Dh®3) (27

K-k, <0, 1-7a?>0, s>0 (229  Whereh= E_llzh(o)-_i- - +; the coefficientD, which is defined
in Appendix A, is positive ifQ,>0. The corresponding

] Lyapunov functional
(heating from belowand

L(h“’)):j dx dy
k—k,>0, 1—7pa’<0, s<O (23

1 1 1
_ (0y2_ — (HRp(0)2, (0)4
X |5A(V h®)?= ZBM®h©2+ 2 Dh

(heating from above The investigation of nonlinear Ma-

rangoni waves generated by the oscillatory instability is the . _ . .
main goal of the present paper. Is bounded from below. Equatiq@7), which was derived in

the theory of phase transitions, is known as t@ahn-

Hilliard equation[28]. It describes the formation of two lo-
11l. DERIVATION OF THE AMPLITUDE EQUAT'ONS Ca”y stable “phases”h(o)m i(B'\A(l)/D)l/2 Separated by

Let us recall the main results of the weakly nonlinear<inks [ﬁg]' . i tert btai
theory for the deformational instability in the case of a sole !N the case of a E}fte? wit g two inter acez one obtains
interface between two fluidéhis corresponds ta, =0 in two stationary instability boundaries!=M, and M =M,
our notation [13,14. The deflection of the interfach is ~ &nd in certain casdsee Eqs(22) and(23)] also the oscilla-

equivalent to the local change of the upper and lower layef°TY instability boundaryM =M. If M, and M, are not
thqickn esses 9 PP y close to each other, the deformations of both interfécasd

h, near each instability threshold are mutually proportional
and the problem is governed by E&5) or (27). If M; and

M, are close and in the case of the oscillatory instability, the
deformations of both interfaces can be considered as inde-
Using expression&24), it is possible to calculate the critical pendent active variables and we can expect that the problem

Marangoni numbeM, as a function oh. It is necessary to  is governed by a system ofo coupled equationsf the type
distinguish between the two casds) Q;=(dM./dh),_g (25) or (27).

a;=1-h, aj=a+h. (249

#0 and(b) Q;=0. As mentioned in Sec. I, in case) we We are going to derive the system of amplitude equations
expect that the instability is nonsazturable-2 In cébethe  for an oscillatory instability in a specific case of a very thin
instability may be saturable @,=(d“M./dh),_¢>0. bottom layera, <1. According to[23], the threshold Ma-

Indeed, in casea) the asymptotic analysigl3,14) leads  rangoni number of the oscillatory instability is
to the amplitude equatiothe Sivashinsky equatiof27])

_2sGasPa(l+na)(1+«a)?

M=M
0 3k(1+a)(1- 7a?)

hO +o(1) (28

or

=—A, (AA, h9+BMDhO@+Chl®2) (25
and the frequency of oscillations in the long-wave lirkit

. . . . . 0 is determined by formulas
whereh(© is the leading term in the asymptotic expansion of y

h=eh®+... in powers of a small parametesr, M w=0?K>+. ..,
=(M—M)/e, 7=¢€%t, andA, is the scaled Laplacian op-

. . .. 1/2
erator; the expressions for positive coefficieAtsB, andC

o| (1t 73) 77, (k) — k)

. . . (2)—
are given in Appendix A. w'”'=Gada 18Jk(1+a)(1— 7a?) a,+o(a,),
Equation(25) may be written in the form (29)
Jh(® sL where
o AL sh(®’ (26 J=n’a*+4na’+6ma’+4ana+tl.

The deflection of the interfad@4) leads to the following
here the Lyapunov functional is defined as change of the critical Marangoni numbee Appendix B
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_25GasP(1-h)(a+h)[(1—h)+ n(a+h)][(L—h)+k(a+h)]? .
- 3x(1+a)[(1—h)2— p(a+h)?]

0 o(1), —a<h<l. (30

The expressions for Q,=(dMy/dh)p-g and Q, oo
=(d?My/dh?),_, which are important for the nonlinear X =EA, hO, (35)
analysis, are given in the Appendix B. CagasQ;+#0 and at

(b) Q;=0, Q,>0 are considered separately.
where

A. The caseQ,#0

Let us consider the region near the threshold of oscillatory
instability

Gas 7,a N

y _:_l—:,
6 1-9a? a2 ay?

M=My+ma,, m=0(1). (31) which describes in the leading order the time evolution of the
deformation of the lower interface.

The linear theory predicts an oscillatory instability in the In the first order ina, we obtain the nonlinear amplitude
region of small wave numbets= O(ai’z). This instability is ~ equation for the evolution of the deformation of the upper
characterized by both the growth rate and the frequency ofterface
oscillations ofO(aZ). From expressioti30) we can expect 0
that the deformationh=0O(a,) are relevant in the case ¢ — . — — 0
Q,#0. Taking into account the scaling properties of eigen- 1 —A,[AA R+ B(m—m,)h®+Ch®2+Fh}],
functions appearing in the linear theory, we introduce the (36)
scaling of variables

where the coefficientd,B,C areexactlythe same as in Eq.

x=aY%, y=al%y, t=at, h=a,h, (25), the quantitym, describing the deviation of the critical
Marangoni number from the valld in the first order ira,,
Tj=T?+a*®j . pi=a.P, Vu:ai/ZVjL ’ is calculated in Appendix C, and
v,=a2V,, (j=1,2, F:sMo(K*—K)naz(l—naz)
(32 2P(1+ ka)?J
h, = aiﬁ* , Ts=s+a,0;, pz=a,P3, Thus we obtained theoupledsystem of amplitude equa-

tions (35 and (36) describing the nonlinear evolution of
long-wavelength deformations of both interfaces near the in-
stability threshold in the case, <1. Let us note that Egs.
(35) and(36) predict a linear oscillatory instability with the
frequencyw = VEFk?+ O(k*) in the case of andF having

the same sign, which coincides with formuy20).

_ .5/ _ 4
V3J__a*2V3J_’ U3, =8, Vg,

where vy, =(vmy,vmy), M=1,2,3. In the region—a—a,
<z=< —a the variable

z=(z+a)la, (33
B. The caseQ;=0
is used. In the caseQ; =0, the nonlinear coefficier® in Eq. (36)
~ The solutionf=(H,H, ,0,,Pn,Vim ,Vim) (M=1,2,3)  vanishes. In order to obtain the nonlinear saturation, it is
is presented in the form of a series necessary to use a different scaling of functions
f=fOta fDt. ... (34) h=alh, T,=T0+a,, p=al?P,,

We substitute the expansioki31)—(34) into the problem
(1)-(17) and collect the terms of the same ordemin. We
obtain the amplitude equations for “active” variableisand (37
H, from the solvability conditions. The details of the deri-
vation of the amplitude equations are relegated to Appendix
C. Here we describe the main steps of the derivation.

In zeroth order, the equations and boundary conditions are V3, = ai Vai, U3= azlesz-
linear. We reproduce the results of the linear theory in the
long-wavelength limif23], including the expressiof28) for ~ The solution is expanded into series in powersa?;f?. Fi-
the critical Marangoni number of the oscillatory instability, nally, Eq.(35) is not changed, while Eq36) is replaced by
and obtain the equation the amplitude equation

Vii=a, Vi, sz:ailzvjz (j=1,2,

hy=alh,, Ts=s+al’®;, ps=a}’Ps,



— =—A,[AA, h@+B(m—m, )h(®—Dh@3+Fh(?7,
(38)

where the coefficienD is the same as in E¢27).

In the case of small but nonze€d, , where the coefficient

C is not exactly equal to zero but sma=Ca? C

*x 1
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traveling wave that propagates along ¥exis in the posi-
tive direction and has the wave numberWe choose

Hi=A(rp)e KX @omtcc,
H* 1= B( Tz)ei(kX7 @070 +C.C.

(c.c. means complex conjugatend find uo=k?, wo=k?,

=0(1), the equation containing both quadratic and cubicandB=—iA. In the second order, the solution is

nonlinearities is obtainetsee[13]):

on @ _
?=—AL[AALh(O)JrB(m—m*)h(O)

+Ch©2-ph(®3+Fnh0, (39)

Equationg36) and(38) can be considered as particular cases

of Eq. (39). By means of the transformation
h=(FE/D?¥H, h,=(E¥FD?)"™H,,

r=(FE/A)t,
(40)

X=(FE/IA?)YX, Y=(FE/A?)YY,

Egs.(39) and (35) are rewritten in the form

oH ) s
S ALA HE pHHyH2-HTH,)=0, (4D
M A H=0 42
(97' 1 ] ( )
where
A _ B(m-m,) . C
o v M Rp 7T (FEDR

IV. TRAVELING WAVE SOLUTIONS
The trivial solutionH=0, H, =0 of the systen{41) and

(42) is stable with respect to disturbances with the wave

numberk in the regionu<k?. On the neutral curve.= ug
=k?, an oscillatory instability with the frequenay,= + k?

appears. In the present section, we consider small-amplitu

solutions that bifurcate on the neutral curve.

A. Bifurcation of traveling wave solutions

H2: A2( 7'2)€2i(kx7 ®o7o) + c.c.,
H* 2= Bz( Tz)eZi(kX7 @070 +cC.C.

(we omit the general solution of the homogeneous system by
renormalizing the amplitudewhere

2yA? _
AZZ.—, 82:_2|A2.
3(i +2k2)

The solvability condition for the third-order equations de-
termines the Landau equation for the amplitude evolution:

dA K2

d7'2— 2

4y2(2k2—1)

3
3(1+4k%

oA+ |[A]2At. (45

The limit cycle corresponding to a traveling wave solution is
A=|A|exp(w,m), where

2y°k?
W=, (46)
3(1+4k%
8y°k? -t
A2=p,| 3— —— (47)
A= k2 3(1+4K%)

One can see that the bifurcation is supercritical for any val-
ues ofk if y<3/\/2. Otherwise, an interval of a subcritical
bifurcation appears in a certain interval laf

B. Interaction of traveling waves

In order to consider the interaction of traveling waves, we
se the same scal€43) and expansion§44) as in the pre-
ding subsection, but in the leading order of the expansion
we choose the solution

Hy=AD(7,)el K X=00r0) 4 AR)(7,)glK? X=wom0)c ¢

In order to describe the traveling wave solutions near the

neutral curve[ u— uo=0(€?), e<1], we introduce the
time scales

To=T, TZZEZT, - (43
and use the expansions
m= ot ez,u,z, H:€H1+€2H2+ cey
Hy=€eH 1+ €H ot -, (44)

In the first order ine, we obtain a linear eigenvalue prob-
lem. Let us consider a particular solution corresponding to a

H,1=BD(rp)el K X000+ B2)(1,)el k¥ X~worolc ¢,

kD|=[k@|=k, wo=k% B®=—iA®) and B®=
—iA®@), corresponding to two traveling waves moving in
different directions. In the second order, the solution has the

structure
Hy= AGD (7)e2 (K X~ 0070) 4 AR 7,) g2 (KX~ w070

+ A(21,2)( 7,)€? (kW +k3). X~ 2wq70)

L_k@)

+AGT2(7,)e? K Xtc.c.,
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H..,=BLY(, )ezi(k<1>~x—w070)+B(2,2) T )ezi(k<2)»x—w070)
*x2 2 ( 2 2 ( 2 Rd:)\(g)_)\o]:3+k2’)/2

1 2 3(4k4+ 1)
+B(21,2)(7_2)62i(k( )+k@). X~ 2wq1)
12 2K x 41+ 0)3(1+20)
v I - . —
tBT e tee AL+ QL +20)2+ (2(2+ ()2
(as before, we omit the general solution of the homogeneous (51)
zi):asrt]ctesr.r). We obtain the following expressions for the coeffi- If y=0 [the quadratic term in the E¢41) is abseritthe

one-dimensional traveling wave is stable with respect to dis-
turbances with the same wave number moving in any direc-

ALY 2yA? (LY _ 9jaLD tion.
2 3(i+2k?) 2 z If v is small, the expressio(bl) is negative only in the
region of small wave numbergk|<4/3y+0(y°), and
2yA2)2 positive otherwise. The expressi@hil) is minimal for small
22=———  BP?=-2iAl??, values of the parametgr {~ —k?*4. Thus the transition to
3(i +2k?) nearly square patterns is expected for sufficiently srkall
Let us note that square patterns were predicted in the case of
NTE 2v(1+ HADAR the dispersion relat_iozv~k2 by Pismer{30]. For finite val-
5= > ues ofy, the traveling wave is unstable with respect to dis-
{2+ H+(1+)(1+20k turbances with =0, generating square patterns, if its wave
number satisfies the relatigk| <k, (), where
BSH?=—i(1+ A,
, 9K*(4k*+1)
AL2=0, BAL2=—  ALA@* Y 231 10K

where {=kM).k@/k?, The solvability condition for the

. . - . i C. Finite-amplitude traveling waves
third-order equations determines a pair of Landau equations

for the amplitudes evolution: In the previous subsections, we analyzed small-amplitude
traveling waves near the neutral curve. Now we shall con-
dA®D K2 sider finite-amplitude spatially periodic traveling wave solu-
i, E[MAW—>\0|A<1>|2A<1>—x(g)|A<2>|2A<l>], tions
H=H(§), H,=H.(§, §&=X-cr, (52)
dA(Z) k2 2 2)|2p(2 1)|2p(2
dr, ~ 2 LA '= N APPAR =\ (0)|ADPAP)], H(E+L)=H(§), H,(£+L)=H,(§). (53
(48) Substituting Eq.(52) into Egs. (41) and (42), eliminating
where H, (£), and integrating once the obtained equation, we arrive
at
492(2k2—1) H
=3 Ak (49 Hegem —o + uH—CH+ (YH?—H¥)= —c(H), (54

5 ) ) where the subscript denotes differentiation with respect to
4y (14 OLK(I+ H(1+20)—15)(2+ )] £ and the integration constant

K1+ 02(1+20)%+ %2+ 9)?

NQ)=6-
(50) i
(M= | heoe

The system of equation@8) describes the nonlinear evolu-
tion of two interacting harmonic waves. It can be easilyis the mean value of the functida(&) and therefore should
shown that in the case where<®Re\y<ReA(¢) for any ¢ be set equal to zero becaubH¢) is proportional to the
(Re denotes the real partthe one-dimensional traveling deviation of the fluid level from its mean value.
wave solutions|AM|2= u,/Re\q, |AP)|?2=0 and|A(?)|? Spatially periodic waveg52) and(53) correspond to limit
= up/Re\g, |AW|2=0 are stable ag.,>0 in frames of the  cycles of the dynamical syste(B4). Equation(54) with the
system(48). In the case Re({)<Re\y, the nonlinear su- periodicity conditionH(£+L)=H(£) is a nonlinear eigen-
perposition of two waves|A®M)|2=|A®)|2=,,/[ReN, value problem for the phase velocityL). Because the de-
+Re\N({)] is stable ifu,>0, Rexg+Re\({)>0. pendencec(L) is a priori unknown, we actually treated in
Using expression§49) and (50), we find that the neces- our calculations the velocitg as a free parameter and com-
sary condition of the stability of one-dimensional traveling puted the corresponding value of the limit cycle’s period
wave solutions is L(c).
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(a) (b) H(x)

4 4 FIG. 3. Traveling wave fop=2 and y=0. The initial condi-
© @ tion is a small-amplitude random field.

W\/\/‘ The trajectory corresponding to the unbounded solution

H=¢/2 (58)
M separates the phase plari¢, i, = —H,) into two regions.
¢ ¢ In the regionH, < —1/2 the trajectories tend to infinity as
(© {—*%. The half planeH, >—1/2 is filled by periodic or-

bits determined by the equation
~ ~ 1.
H,—In(1+2H,)+ EH2=E, E=const>0.

If E>1, the wave relief has a “sawlike” shape. On a long
interval of the lengttO(VE), H, = — 1/2+ O(exp(~E)), so
FIG. 2. Examples of traveling wavetrains according to &6):  that the relief ofH is exponentially close to the linear profile

g z;g g;_8_’52(2)55;2:’0%;;7(5)1;:; 00;05_3’1{‘;2%?% (58). On a short interval of the leng®(1/\E), H, >0, and
(€ y=3, c=—0.8, u=0.368. H, =O(E), which corresponds to a steep wave frontbf
The typical wave profile$i(¢) andH, (¢) calculated by
Equation (54) can be simplified in the limiting case of means of the symmetricy=0) and “asymmetric” (y=1)
smallc. Multiplying Eq. (54) by H and integrating over the €quation(55) are plotted in Figs. @) and 2b), respectively.
period, we find tha(Hé)zcz(HZ). Thus the limitc—0 cor- ~ These two plots, as well as Figsic2and 2d), present the

4

responds to the long-wavelength lintit— . longitudinal shapg of the waves in the correct way. On '_[he
In this long-wavelength limit, it is convenient to use the contrary, the vertical displacements, as related to the thlc_:k—
variable = c¢& and to rewrite Eq(54) in the form nesses of the layers, cannot be recovered from the equations
and therefore are represented only qualitatively.
—C®H g +Hy+ (H3=yH? = uH) ,+H=0. (55 In the case of vanishing or small valuespthis regular

pattern with one hump on a period is the only nontrivial
Let us note thaH, = —H,. In the limitc—0, if the periodic  bounded solution of Eq(54) and exists only for positive
solutions of Eq(55) reveal no boundary layers, they tend to values of «; the velocity of the traveling waves obeys the

the periodic solutions of the second-order equation inequality c?< . and for each value of there exists only
5 ) one periodic solution. The situation changesfor \'3 when
He+(H?=yH = uH) +H=0. (56)  the above inequality does not necessarily hold. In this case

) the increase ofu can create the finite-amplitude periodic
For the casey=0 where the traveling waves are expected togq| tions through a saddle-node bifurcation. Unger2.8
be stable with respect to two-dimensional disturbances, Egpe traveling waves of this kind can be found even for nega-
(56) turns into the familiar case of the Van der Pol equationgjye values ofs. For sufficiently largey, the upper interface
[31]. The latter is known to yield limit cycles whose shape gisplays the characteristic sawlike oscillations, whereas the
varies from harmonic oscillationn the case of smajlk) o |ower one is built of the long, almost horizontal segments
the strongly nonlinear relaxation oscillations for large Va|uesseparated by short elevatioffig. 2(c)].
of . In the case of nonzerg the invariance of the equation Moderate and large values of allow for more compli-
with respect to the change of sign ldfis broken: The relax-  ¢ated patterns of traveling waves: In this parameter domain
ationlike oscillations are still observed, but the characteristiqne encounters further bifurcations of periodic solutions,
Van der Pol symmetry between the humps and the troughs {ghich include cascades of period doublings fact, these
absent. - o doublings with respect to the variabfeare doublings of the
~Some additional simplification of Eq56) can be ob-  gpatial periodl and the onset of chaotic wave profiles. Re-
tained in the limit y>1, u<1. If we assume thaH  gspective deformations of the interfaces are plotted in Figs.
=y 'H andH=0(1) and omit the term containing, we  2(d) and Ze). In the last three cases the periodic pattern
find in the leading order delivered by Eq(55) under the fixed values of and u for
a given velocityc is not unique(in the very last case there is
ﬁa—(ﬁz)frﬁ =0. (57 apparently an infinity of different periodic solutions
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H(x) )
N VAVAVAVAVAVAWAS 0" i
-1.5 -2.5
H (x)
i 5 H(x)
-2.5 -5
0 6, 124, 181, 24, 302, 0 4, 81, 124, 162, 200,
FIG. 4. Traveling wave fop=2 and y=0. The initial condi- FIG. 6. Typical interfacial profiles fop=0.7 and y=3.

tion is a regular function 0©(1).
length is noticeably larger. Figure 5 shows the interfaces
V. NUMERICAL SIMULATION OF THE AMPLITUDE with four typical humps that form the traveling wave moving
EQUATIONS with the velocity c=—0.00197. Only the blowup for all
tested initial conditions was observed in final stage of evo-
lution for the pairu=0.03, y=1.
Typical irregular interfacial profiles observed for the pairs

2 2 . .
oH + J ﬂ+MH+’yH2—H3+H* -0, (59 M=07, y=3 [Fig. 2d)] and ©=0.368, y=3 [Fig. )]

The one-dimensional version of Eqg.l) and (42)

ar E NG are shown in Figs. 6 and 7, respectively. The dynamics, ob-
served for all initial conditions, are unsteady. The typical
JH H wave scale in both cases is larger than The question of
*

- = (60)  stability of one-dimensional regimes in the framework of the
It 9x2 partial differential equation$4l) and (42) as well as their
evolution with respect to the two-dimensional perturbations

was simulated numerically under periodic boundary condi-must be studied separately and lies outside the range of our
tions. The pseudospectral technique was employed for theurrent research.
spatial discretization and the Adams scheme for the time
advance. The standard routines6eAF and CO6EBF for the VI. CONCLUSIONS
fast Fourier transform ando2cBr for the Adams scheme ] )
from the NAG routines library were used. The number of ~We have shown that the weakly nonlinear regimes of the
spatial discretization points was chosen in such a way thdPng-wave Marangoni instability in a system with two inter-
the typical wavelength .= 2/k. of the most unstabléin faces in the case where one of the fluid layers is thin are
linear approximationmode with wave numbek, was cov- go_ve_rned by thg Cahn-Hilliard equation coupled Wlth a cer-
ered by at least ten points. The latter ensures fair resolutioffin linear equation. In the absence of the quadratic nonlinear
of the calculated solution. The time step was chosen autd®™. the periodic traveling waves are generated rather than
matically. kinks that are typical for the pure Cahn-Hilliard equation.

Both small-amplitude random fields and regular functionsNumerical simulation reveals multistability of wavy regimes.
with amplitudes ofO(1) were used as initial data in all If the quadratic nonlinear interaction is present, one can ex-
simulations. In a number of cases the result of evolutiorP€Ct the onset of two-dimensional wavy patterns. Investiga-
depends on initial conditions. This means that E§$) and tion of such patterns remains beyond the scope of the present
(60) have different coexisting attractors. We considered thd?@Per.
same values of parameterg,( «) as in Fig. 2.

For the parameters values gfand u from Fig. Aa) two ACKNOWLEDGMENTS
different interfacial configurations were obtained: Random  +p.s \work was supported in part by the German-Israeli

small-a_mpli_tude initial conditions evolv_eq_ to the_ _profile Foundation for Scientific Research and Development under
shown in Fig. 3, whereas the reguia(1) initial conditions —pegearch Contract No. | 0460-228.10/95. 1.B.S. acknow-
settled to the wave plotted in Fig. 4. Interfaces form theedges the support of the Israeli Ministry of Science and Hu-

traveling waves moving with velocities= _9'0015 andc _manities and the Israeli Ministry for Immigrant Absorption.
=—0.01, respectively. In both cases the typical wave scale is

larger than that predicted by the linear theaxy,

A few different interfacial configurations were observed
for the pairu=0.368, y=1 [Fig. 2(b)]. Depending on the The equation$25) and(27) describing the evolution of an
initial conditions, the number of the humps for the settledinterface in the case of a stationary long-wavelength instabil-
wave states within the domain varies between 1 and 6; comity were derived in14] (see alsd13]). Here we present the
pared to the results of the linear stability analysis, the waveexpressions for the coefficients appearing in these equations:

APPENDIX A

0.8 H(x) s
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FIG. 5. Traveling wave fop=0.368 and y=1. FIG. 7. Typical interfacial profiles fon=0.368 andy=3.
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APPENDIX B

A uniform deflection of the upper interfa¢g4) is equiva-
lent to the local change of the upper and middle layer thick-

nessegin dimensional variablgs

a;=ay(1-h), aj=a,+ha;.
The onset of convection instability is determined by the pa-
rameters
aba; ga;® a,
r— — [ i
71X1’ v a;

According to Eq.(28), the threshold is governed by the for-

mula

M,_ZSGa’ﬁP(1+ na')(1+«ka')?
3k(l+a')(1—gpa'?)

+0(1).

Returning to variable$, Ga, ands, we rewrite the latter

equation in the form(30). The parameteh can vary within
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the interval —a<h<1. The expressions for variabl&3,;
=(dMy/dh)—o andQ,=(d?’M,/dh?),_, are directly con-
nected with those oK; andK, [see Eqs(A5) and (A6)]:

Q1=KiMg, Qy=K;My.

APPENDIX C

In the present appendix we describe some details of the
derivation of the amplitude equatiof(35) and (36). Substi-
tuting the expression&1)—(34) into the problem(1)—(17),
we obtain the following system of equations and boundary
conditions:

p— &zvli - 2
_VJ_P]_‘F?‘F&*_ALV]_J_:O(&*), (Cl)
9P, 9*V1, 5
R =0(ay), (C2
1450, a
0 2 1 * A
aViAl+O@) =g+ T T, (Y
NG —
o +V, -V, =0, (Co
p— 1 2V2L a*_ 2
—pVLP2+— +_ALV2L=O(a*), (CS)
14 9z 14
(7P2 a, (92V22 2
Bl = e =0(a%), (Co
Vo+0(at) == P02 B o
8, V2R (a*)_X_P o2 xPoL2 (C7)
Ny, —
?‘FVL'VZJ_:O, (C8)
—pya,V, Ps+t — ——=0(a’), (C9)
v z
dP3 ’
0z
L 705 0(a?) (C11)
— =0(a2%),
X« P 972 *
N3, —
24V, Vs, =0, (C12)
Iz
VMIO, V]_Z:O, @120 at Z:]., (C13)
V,3=0, Vi3,=0, Os=s at z=-1; (Cl4

at z=0,
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— S —_—— —_—— a,h = —=0 a
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Vi +a, h —V2¢+a h +O(a ), (C17) We construct the solution in the for(34).
In the zeroth order, we obtain a linear eigenvalue problem
v that determines the critical Marangoni numi2s) and the
_(9 . .
Vy,+a, hﬁzvzﬁa* (33)7 (C18 eigenfunction
_ s(k—1)h©@
oh — V1, ) 0 =——-——-(z-1),
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2

a“ — 1 — 2sGadP(1l+ka) | k,(1+na)(—1+2k+ka
7 2h(0)’ P(20>=P§°)=Ga6—2h(°). m, = ( )[ »(1+ na)( )

PP=Gas =
! 1- »a 1-7a 3(1—pa)k(1+a)| k(1+a)

Also, we obtain the relatio35).

In the first order ina, , we obtain the inhomogeneous 7, (1+2pa+ na)(1+ ka?)(1+ «a)
linear problem. The solvability condition for this problem + 1— pa2 (C29
gives the relation(36) with 7(1=7a%)
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